TC-32-EXP

32-Channel Thermocouple Input Expansion Device for TC-32

User's Guide

Trademark and Copyright Information

Measurement Computing Corporation, InstaCal, Universal Library, and the Measurement Computing logo are either trademarks or registered trademarks of Measurement Computing Corporation. Refer to the Copyrights & Trademarks section on mccdaq.com/legal for more information about Measurement Computing trademarks. Other product and company names mentioned herein are trademarks or trade names of their respective companies.

© 2016 Measurement Computing Corporation. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form by any means, electronic, mechanical, by photocopying, recording, or otherwise without the prior written permission of Measurement Computing Corporation.

Notice

Measurement Computing Corporation does not authorize any Measurement Computing Corporation product for use in life support systems and/or devices without prior written consent from Measurement Computing Corporation. Life support devices/systems are devices or systems that, a) are intended for surgical implantation into the body, or b) support or sustain life and whose failure to perform can be reasonably expected to result in injury. Measurement Computing Corporation products are not designed with the components required, and are not subject to the testing required to ensure a level of reliability suitable for the treatment and diagnosis of people.

Table of Contents

Preface About this User's Guide	4
What you will learn from this user's guide	
Conventions in this user's guide	
Where to find more information	
Chapter 1	
Introducing the TC-32-EXP	
Functional block diagram	6
Chapter 2 Installing the TC-32-EXP	7
Unpacking	7
Installing the software	7
Installing the hardware	7
Chapter 3	
Functional Details	
External components	
TC input connectors, measurements, and LED Digital I/O	
LED indicators	
TC-32 connector	
Chassis ground connector	
Mechanical drawings	14
Chapter 4 Specifications	17
Thermocouple input	17
Channel configuration	18
Compatible thermocouple sensors	18
Accuracy	18
Thermocouple measurement accuracy	
Digital input/output	19
Temperature alarms	20
Memory	20
Microcontroller	20
LED displays	20
Environment	21
Mechanical	21
Signal I/O connectors	21
Declaration of Conformity	24

About this User's Guide

What you will learn from this user's guide

This user's guide describes the Measurement Computing TC-32-EXP data acquisition device and lists device specifications.

Conventions in this user's guide

For more information

Text presented in a box signifies additional information related to the subject matter.

Caution!	Shaded caution statements present information to help you avoid injuring yourself and others, damaging your hardware, or losing your data.
bold text	Bold text is used for the names of objects on a screen, such as buttons, text boxes, and check boxes.
italic text	<i>Italic</i> text is used for the names of manuals and help topic titles, and to emphasize a word or phrase.

Where to find more information

Additional information about TC-32-EXP hardware is available on our website at www.mccdaq.com. You can also contact Measurement Computing Corporation with specific questions.

- Knowledgebase: <u>kb.mccdaq.com</u>
- Tech support form: www.mccdaq.com/support/support form.aspx
- Email: <u>techsupport@mccdaq.com</u>
- Phone: 508-946-5100 and follow the instructions for reaching Tech Support

For international customers, contact your local distributor. Refer to the International Distributors section on our website at www.mccdaq.com/International.

Introducing the TC-32-EXP

The TC-32-EXP is a dual-interface data acquisition device that provides the following features:

- Adds 32 differential thermocouple (TC) inputs to TC-32 for a total of 64 TC channels (includes 40-pin ribbon cable for connecting to TC-32))
- Two 24-bit ADCs (one ADC per 16 inputs)
- TC channels field-to-host isolation
- 3 S/s per update rate
- Support for type J, K, R, S, T, N, E, and B thermocouples, software-selectable per channel
- One integrated cold junction compensation (CJC) sensor per TC input
- Open thermocouple detection (OTD) to detect faulty TC connections
- 8 digital inputs, isolated from TC and host
- 32 digital outputs/alarms isolated from TC inputs and host
- DIO connections are made to 50-pin header connector
- Powered by host TC-32

Functional block diagram

Device functions are illustrated in the block diagram shown here:

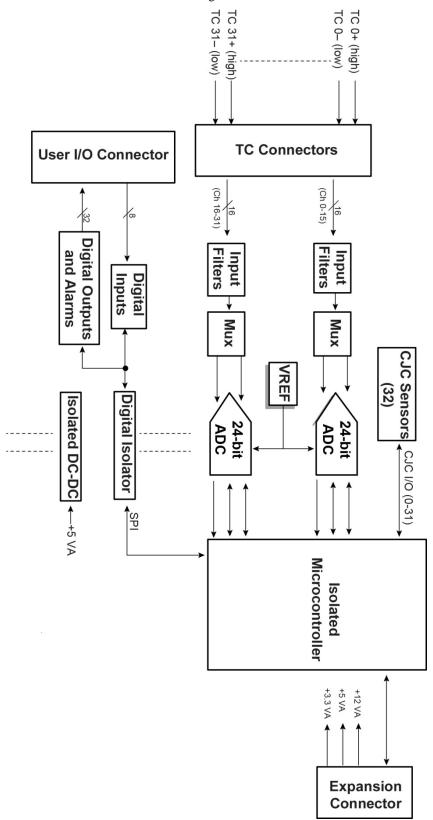


Figure 1. TC-32-EXP functional block diagram

Installing the TC-32-EXP

Unpacking

As with any electronic device, you should take care while handling to avoid damage from static electricity. Before removing the board from its packaging, ground yourself using a wrist strap or by simply touching the computer chassis or other grounded object to eliminate any stored static charge.

Installing the software

Refer to the MCC DAQ Software Quick Start for instructions on installing the software on the MCC DAQ CD. Refer to the device product page on the Measurement Computing website for information about the included and optional software supported by the TC-32-EXP.

Install the software before you install your device

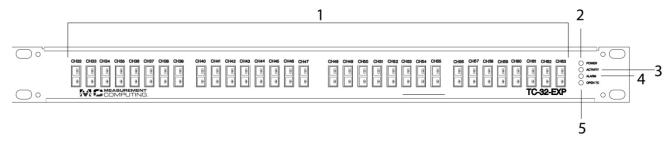
The driver needed to run the TC-32-EXP is installed with the software. Therefore, you need to install the software package you plan to use before you install the hardware.

Installing the hardware

The TC-32-EXP must be connected to a host TC-32 in order to communicate with a computer and receive power. Refer to the *TC-32 User's Guide* for instructions on installing, configuring, calibrating, and updating the firmware on the host TC-32.

Complete the following steps to connect the TC-32-EXP to a host TC-32:

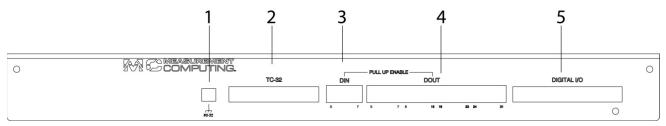
- 1. Power off the host TC-32 and connect the TC-32-EXP (connector labeled **TC-32**) to the TC-32 (connector labeled **EXPANSION**) using the 40-pin cable provided.
- 2. Connect the chassis ground connector on the rear of the TC-32-EXP (refer to <u>Figure 3</u> on page 8) to the chassis ground connector on the rear of the TC-32.


Caution! If using both the TC-32 chassis ground screw connection and a USB or shielded Ethernet cable, a ground loop could be created if the two grounds are not at the same voltage potential. You should avoid creating a ground loop situation which could affect measurement accuracy.

3. Connect the TC-32-EXP to its TC and digital I/O signal sources, and then power on the host TC-32.

Functional Details

External components


TC-32-EXP front panel components are shown in Figure 2.

- 1 TC input channels 32 through 63 (32 mini-jack connectors) 4 ALARM LED
- 2 POWER LED
 - OTT (IT)
- 3 **ACTIVITY** LED

Figure 2. TC-32-EXP front panel components

TC-32-EXP rear panel components are shown in Figure 3.

- 1 Chassis ground connector
- 4 32 digital output (**DOUT**) pull-up switches

OPEN TC LED

- 2 40-pin TC-32 connector
- 5 50-pin **DIGITAL I/O** connector
- 3 Eight digital input (DIN) pull-up switches

Figure 3. TC-32-EXP rear panel components

TC input connectors, measurements, and LED

A thermocouple consists of two dissimilar metals that are joined together at one end. When the junction of the metals is heated or cooled, a voltage is produced that correlates to temperature.

You can add another 32 differential TC input connections to mini-jack connectors labeled CH32 through CH63 (refer to Figure 2).

The device supports type J, K, S, R, B, E, T, N thermocouples.

Caution! MCC strongly recommends that you ground yourself using a wrist strap before handling the thermocouple sensors.

Connecting TCs to common-mode voltage sources

You can connect a thermocouple to a common voltage source (AC or DC) as long as the magnitude of the voltage is within the common mode voltage range specification of 48V (DC) or 3.5V p-p (AC).

Each applied common mode voltage must be less than or equal to the average common mode voltage ±1.4 V.

For example, in Figure 4, there are three TCs connected to three different common mode voltage sources and two thermocouples that are not connected to anything (floating).

In this example, the average common mode voltage is calculated as follows: (11.4 V + 10 V + 8.6 V)/3 = 10 V

- Each TC channel becomes biased to the average common mode voltage of 10 V.
- Each common mode voltage must then be within the 10 V ±1.4 V limits or 8.6 V to 11.4 V.

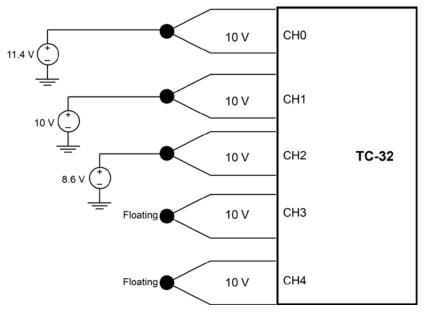


Figure 4. TC-32-EXP common mode voltage connections example

Cold junction compensation (CJC)

Each TC input on the TC-32 has a high-resolution CJC sensor. When you connect the thermocouple sensor leads to the sensor input channel, the dissimilar metals at the TC-32 terminal blocks produce an additional thermocouple junction. This junction creates a small voltage error component which must be removed from the overall sensor measurement using a CJC technique.

The measured voltage includes both the thermocouple voltage and the cold junction voltage. To compensate for the additional cold junction voltage, the TC-32 subtracts the cold junction voltage from the thermocouple voltage.

Increasing the thermocouple length

If you need to increase the length of your thermocouple, use the same type of TC wires to minimize the error introduced by thermal EMFs.

Data linearization

After the CJC correction is performed on the measurement data, an on-board microcontroller automatically linearizes the thermocouple measurement data using National Institute of Standards and Technology (NIST) linearization coefficients for the selected thermocouple type.

The measurement data is then output as a 32-bit floating point value in the configured format (voltage or temperature).

Open-thermocouple detection (OTD)

The TC-32 is equipped with OTD for all analog input channel. With OTD, any open-circuit condition at the TC sensor is detected by the software. An open channel is detected by the use of a pull up and pull down resistors on the thermocouple inputs. An open thermocouple condition forces the input differential voltage outside of the valid thermocouple voltage range. The software recognizes this as an invalid reading and flags the appropriate channel. The software continues to sample all channels when OTD is detected.

Input leakage current

With OTD enabled, 75 nA (max) of input leakage current is injected into the TC. This current can cause an error voltage to develop across the lead resistance of the TC that is indistinguishable from the thermocouple voltage you are measuring. You can estimate this error voltage with the following formula:

error voltage = resistance of the thermocouple \times 75 nA

To reduce the error, reduce the length of the TC to lower its resistance, or lower the AWG of the wire by using a wire with a larger diameter. With open-thermocouple detection disabled, 2 nA (max) of input leakage current is injected into the TC.

Digital I/O

The TC-32-EXP provides eight digital inputs and 32 digital outputs that are electrically isolated from the host computer and from the TC-32-EXP analog circuits.

All DIO bits have internal pull-up resistors to 5 V that can be disabled with the rear panel slide switches.

When pull-up is disabled for a digital bit, the bit is left floating.

The recommended maximum length of the 50-pin cable used to connect the **DIGITAL I/O** connector to the digital I/O signal source is 1 foot.

Digital inputs

The TC-32-EXP provides eight digital inputs with rates of 500 port reads or single bit reads per second.

Digital input voltage ranges of 0 V to 15 V are permitted, with thresholds of 0.6 V (low) and 2.2 V (high).

Each digital input has a 100 k Ω pull-up resistor. Use the eight **PULL-UP ENABLE – DIN** slide switches to enable or disable the 5 V pull-up option.

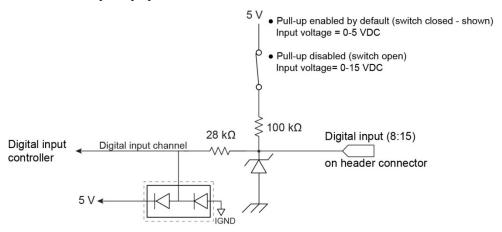


Figure 5. Digital input connection example

Digital outputs/temperature alarms

The TC-32-EXP has 32 digital outputs which are *open-drain*. Each DO bit has a 100 k Ω pull-up resistor and can sink up to 100 mA for direct drive applications. Use the eight **PULL-UP ENABLE – DOUT** slide switches to enable or disable the 5 V pull-up option.

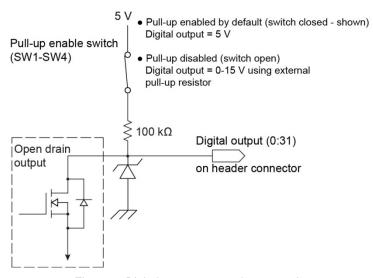


Figure 6. Digital output connection example

Optionally, you can configure each digital output as an alarm for each TC input. When an alarm is enabled, its associated output line is driven to the appropriate state determined by the alarm options and input temperature.

You can also use the alarm outputs to control a device or application that indicates when a temperature threshold has been exceeded.

When its pull-up is disabled, a DO bit can be used to control a device needing up to 15 V (user-provided) @ 100 mA. If the device needs more voltage/current than this, use a TC-32-EXP-controlled MOSFET^{1.} (user-provided) to control higher voltages and currents.

Depending on the MOSFET used, the TC-32-EXP can control up to 50 VDC @ 80 A.

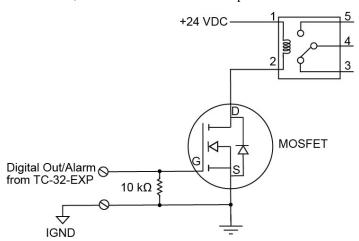


Figure 7. Example of digital output/alarm controlling a relay

The alarm configurations are stored in non-volatile memory and loaded at power up.

Alarm settings are applied when changed and at power on. Temperatures are constantly converted on enabled channels and processed for alarm conditions regardless of the communications connectivity.

¹ Metal-oxide semiconductor, field-effect transistor that uses an induced electrical field to control current through the device. Either negative or positive gate voltages can be applied to control the current.

Each available alarm mode and setting is explained in the following table.

Alarm input modes Set independent temperature thresholds T1 and T2 for each alarm.	 Trigger alarm when input temperature ≥ T1; reset alarm when input temperature < T2 Trigger alarm when input temperature ≤ T1; reset alarm when input temperature > T2 Trigger alarm when input temperature is < T1 or > T2
Alarm error modes	 Alarm on temperature reading only Alarm on temperature reading, open thermocouple, or common-mode voltage error Alarm on open thermocouple or common-mode voltage out-of-range error only
Alarm output modes	 Alarm disabled; digital output line can be used for normal operation Alarm enabled; active low output (output line goes low when alarm condition is met) Alarm enabled; active high output (output line goes high when alarm condition is met) Alarm output may be latched and will not clear unless explicitly cleared by the user

The TC-32-EXP provides three alarm indicators – the <u>ALARM LED</u>, the <u>OPEN TC LED</u> on the front panel and, optionally, the user-configurable digital outputs associated with each channel.

Because the digital alarm outputs are user-configurable, they can be used to supply additional information (visually, if the digital outputs are used to drive LEDs), such as the channel associated with the alarm condition or differentiating between threshold and common mode voltage out-of-range alarms.

Pull-up configuration

By default, pull-up is enabled for all eight digital inputs and all 32 digital outputs. Slide switches on the rear of the housing can disable pull-up for each digital input bit and digital output bit.

LED indicators

The TC-32-EXP has four LEDs that indicate the power, communication, alarm, and open TC status

POWER LED²

The **POWER** LED turns on when you plug the power adapter into the TC-32-EXP. If a Flash LED command is sent from an application, the **Power** LED blinks five times.

ACTIVITY LED²

The **ACTIVITY** LED turns on when there is a valid connection (USB or Ethernet) and blinks when a command is sent to the TC-32-EXP.

ALARM LED

The **ALARM** LED turns on when an alarm condition occurs.

OPEN TC LED

The **OPEN TC** LED turns on when there is an open thermocouple condition.

² Both the **POWER** and **ACTIVITY** LEDs blink in firmware upgrade mode. Refer to <u>Updating firmware</u> on page 8.

TC-32 connector

Use the **TC-32** connector to connect the TC-32-EXP to a host TC-32 device (sold separately). Refer to <u>Installing the hardware</u> on page 7.

Refer to www.mccdaq.com for TC-32 product details.

Chassis ground connector

Provides a connection point (#6-32 screw) for chassis ground. Connect this to the chassis ground connector on the host TC-32.

Mechanical drawings

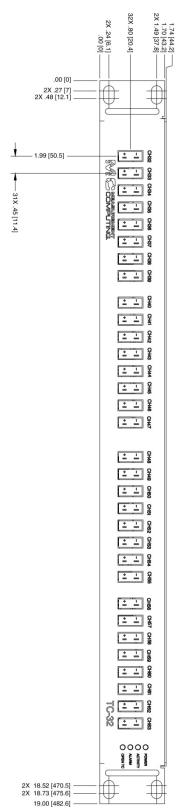


Figure 8. Enclosure dimensions - front

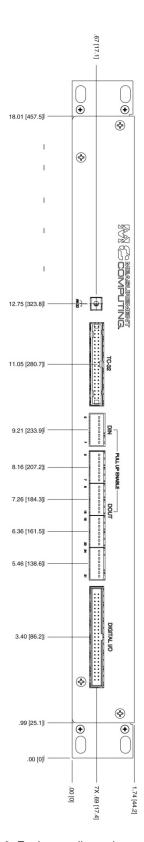


Figure 9. Enclosure dimensions - rear

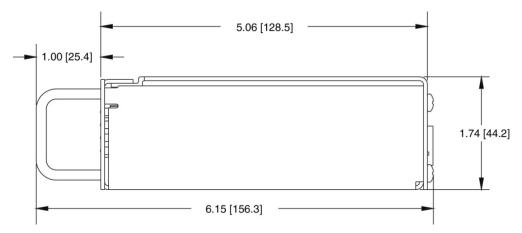
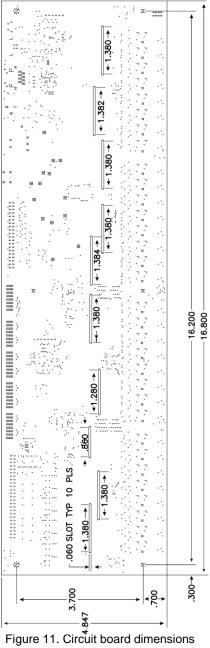



Figure 10. Enclosure dimensions – side

Specifications

All specifications are subject to change without notice. Typical for 25 °C unless otherwise specified. Specifications in *italic* text are guaranteed by design.

Thermocouple input

Table 1. Generic analog input specifications

Parameter	Condition	Specification		
A/D converter type		Delta-Sigma		
A/D resolution		24-bit		
Number of channels		32		
Filtering options		50 Hz or 60 Hz noise filtering, software- selectable		
Isolation	Between any TCx channel and chassis ground.	500 VDC absolute max.		
Channel configuration		Software-selectable to match thermocouple sensor type		
Differential input voltage range		±78.125 mV		
Absolute maximum input voltage	Between any two TCx inputs	±25 V (power on) ±25 V (power off)		
Difference in the second in the second	50 Hz filtering, power on	26 ΜΩ		
Differential input impedance	60 Hz filtering, power on	20 ΜΩ		
Innut augment	Open thermocouple detect disabled	2 nA		
Input current	Open thermocouple detect enabled	75 nA		
C	50 Hz filtering, at DC and f _{in} =50 Hz	110 dB		
Common mode rejection	60 Hz filtering at DC and f _{in} =60 Hz	110 dB		
Noise rejection	50 Hz filtering at f _{in} =50 Hz	80 dB typ.		
Noise rejection	60 Hz filtering at f _{in} =60 Hz	80 dB typ.		
T 41 1 141	50 Hz filtering	22 Hz		
Input bandwidth	60 Hz filtering	26 Hz		
Crosstalk	Between any two TCx inputs	-90 dB		
Sample rate (Note 1)		3 Hz max (per channel)		
	TCx channel to TCx channel	±1.40 V		
Common mode voltage range (Note 2)	TCx channel relative to chassis ground, $f_{in} = 60 \text{ Hz}$	±3.5 VAC p-p		
	TCx channel relative to chassis ground	±48 VDC		
Input noise	50 Hz or 60 Hz filtering	510 nV rms		
Gain error	50 Hz or 60 Hz filtering	0.004 %		
Offset error	50 Hz or 60 Hz filtering	3 μV		
3.6	Thermocouple type J,K,T,E,N	0.05 °C		
Measurement sensitivity (Note 3)	Thermocouple type R,S	0.10 °C		
(11016 3)	Thermocouple type B	0.15 °C		
Warm-up time		20 minutes min		
Open thermocouple detect response time		1 second		
CJC sensor accuracy	0 °C to 45 °C	±0.20 °C typ ±0.40 °C max		

Calibration method	Factory
Recommended warm-up time	20 minutes min
Calibration interval	1 year (factory calibration)

- **Note 1:** The enabled thermocouple inputs are continuously converted at the maximum A/D converter rate.
- Note 2: When thermocouple sensors are connected to different common mode voltages, the channels with floating thermocouples sensors will be biased to approximately the average value of the applied common mode voltages. Each of the applied common mode voltages must then be less than or equal to the average common mode voltage $\pm 1.40 \text{ V}$ or $[\text{CMV}_{\text{applied}} \leq (\text{CMV}_{\text{average}} \pm 1.4 \text{ V})]$.
- Note 3: Measurement sensitivity is the smallest change in temperature that can be detected.

Channel configuration

Table 2. Channel configuration specification

Sensor Category	Condition	Specification
Thermocouple	J, K, S, R, B, E, T, N	32 differential channels

Note 4: Channel configuration is stored on EEPROM external to the isolated microcontroller by the firmware whenever any item is modified. Modification is performed by commands issued from an external application, and the configuration is made non-volatile through the use of the EEPROM.

Compatible thermocouple sensors

Table 3. Compatible sensor type specifications

Parameter	Specification		
	J: –210 °C to 1200 °C		
	K: –270 °C to 1372 °C		
	R: -50 °C to 1768 °C		
Thermocouple	S: -50 °C to 1768 °C		
	T: –270 °C to 400 °C		
	N: –270 °C to 1300 °C		
	E: –270 °C to 1000 °C		
	B: 0 °C to 1820 °C		

Accuracy

Thermocouple measurement accuracy

Table 4. Thermocouple accuracy specifications, including CJC measurement error. All specifications are (±).

Sensor Type	Sensor Temperature (°C)	Accuracy Error Maximum (°C), 15°C to 35°C	Accuracy Error Typical (°C), 15°C to 35°C	Accuracy Error Maximum (°C), 0°C to 45°C	Accuracy Error Typical (°C), 0°C to 45°C
	-210	1.965	0.910	2.167	0.989
J	0	0.787	0.361	0.816	0.375
	1200	0.752	0.371	1.148	0.508
	-210	2.295	1.061	2.520	1.152
K	0	0.821	0.376	0.852	0.392
	1372	1.029	0.504	1.560	0.688
	-50	2.467	1.111	2.655	1.223
S	250	1.835	0.825	1.961	0.904
	1768	0.893	0.361	1.519	0.590
	-50	2.609	1.174	2.810	1.293
R	250	1.862	0.837	1.992	0.918
	1768	0.754	0.305	1.346	0.520
В	250	2.450	1.090	2.707	1.254

Sensor Type	Sensor Temperature (°C)	Accuracy Error Maximum (°C), 15°C to 35°C	Accuracy Error Typical (°C), 15°C to 35°C	Accuracy Error Maximum (°C), 0°C to 45°C	Accuracy Error Typical (°C), 0°C to 45°C
	700	0.937	0.424	1.136	0.520
	1820	0.610	0.300	1.056	0.467
	-200	1.754	0.811	1.933	0.880
E	0	0.775	0.355	0.806	0.369
	1000	0.657	0.323	0.989	0.437
	-200	2.005	0.923	2.207	1.005
Т	0	0.836	0.382	0.874	0.400
	400	0.544	0.255	0.659	0.297
	-200	2.255	1.038	2.481	1.134
N	0	0.908	0.415	0.949	0.437
	1300	0.718	0.357	1.157	0.510

Thermocouple measurement accuracy specifications include polynomial linearization, cold-junction compensation, and system noise. The accuracy specifications assume the device is operated within its enclosure and with the enclosure in a horizontal, upright orientation. The board should also be warmed up for the recommended 20 minutes. If the maximum digital output load of 3.2 amps is applied, add an additional 0.30°C to the typical and maximum accuracy specifications listed above. Errors shown do not include inherent thermocouple error. Contact your thermocouple supplier for details on the actual thermocouple accuracy error.

Digital input/output

Table 5. Digital input specifications

Parameter	Specification	
Number of inputs	8 channels	
Configuration	Fixed input	
Input voltage range	0 V to +15 V	
Input type	CMOS (Schmitt trigger)	
Input characteristics	100 kΩ pull-up resistor, 28.7 kΩ series resistor	
Maximum input voltage range	0 V to +20 V max (power on/off, relative to IGND pins)	
Pull-up configuration	All pins pulled up to +5 V via individual 100 k Ω resistors using slide switch SW5. SW5 default positions are on (pulled up.)	
Transfer rate (software paced)	500 port reads per second typ	
Input high voltage	1.3 V min, 2.2 V max	
Input low voltage	1.5 V max, 0.6 V min	
Schmitt trigger hysteresis	0.4 V min, 1.2 V max	

Table 6. Digital output specifications

Parameter	Specification
Number of outputs	32 channels, shared with alarms
Configuration	Open drain output
Output characteristics	100 kΩ pull-up, open drain (DMOS transistor)
Pull-up configuration	All pins pulled up to +5 V through individual $100 \text{ k}\Omega$ resistors using slide switches SW1-SW4. The default positions for SW1-4 are on (pulled up.)
Transfer rate (software paced)	500 port writes per second typ
Output voltage range	$0~V~to~+5~V~(internal~100~k\Omega~pull-up~resistors~connected~to~+5~V~by~default)$ 0~V~to~+15~V~max~(using~external~pull~up~resistor)
Off state leakage current	0.1 μΑ
Sink current capability	100 mA max (continuous) per output pin
DMOS transistor on-resistance (drain to source)	4Ω

Note 5: Ground pins labeled IGND are isolated from AGND and chassis ground.

Temperature alarms

Table 7. Temperature alarm specifications

Parameter	Specification	
Number of alarms	32, shared with digital output	
Alarm functionality	Each alarm controls its associated digital output line as an alarm output. When an alarm is enabled, its associated output line is driven to the appropriate state determined by the alarm options and input temperature. The alarm configurations are stored in non-volatile memory and loaded at power on.	
Alarm input modes	 Alarm when input temperature >= T1, reset alarm when input temperature < T2 Alarm when input temperature <= T1, reset alarm when input temperature > T2 Alarm when input temperature is < T1 or > T2 Note: T1 and T2 may be independently set for each alarm. 	
Alarm error modes	 Alarm on temperature reading only Alarm on temperature reading, open thermocouple, or common-mode voltage error Alarm on open thermocouple or common-mode voltage error only 	
Alarm output modes	 Disabled, digital output line may be used for normal operation Enabled, active high output (output line goes high when alarm condition is met) Enabled, active low output (output line goes low when alarm condition is met) Alarm output may be latched and will not clear unless explicitly cleared by the user 	
Alarm latency (Note 6)	1 second, max	

Note 6: Alarm settings are applied when changed and at power-on. Temperatures are constantly converted on enabled channels and processed for alarm conditions regardless of the communications connectivity.

Memory

Table 8. Memory specifications

Parameter	Specification
EEPROM	4,096 bytes

Microcontroller

Table 9. Microcontroller specifications

Parameter	Specification	
Туре	One high-performance 32-bit RISC microcontroller	

LED displays

Table 10. LED and button configurations

Parameter	Specification		
POWER LED (top)	Indicates power on. Blinks when blink command is sent. Both the POWER and ACTIVITY LEDs blink in firmware upgrade mode.		
ACTIVITY LED	On when there is a valid connection and blinks when a command is sent to the TC-32-EXP. Both the POWER and ACTIVITY LEDs blink in firmware upgrade mode.		
ALARM LED Indicates that an alarm condition is met.			
OPEN TC LED (bottom)	Indicates that there is an open thermocouple condition.		

Environment

Table 11. Environmental specifications

Parameter	Specification
Operating temperature range	0 °C to 45 °C
Storage temperature range	−40 °C to 85 °C
Humidity	0 °C to 90% non-condensing

Mechanical

Table 12. Mechanical specifications

Parameter	Specification				
Dimensions $(L \times W \times H)$	$482.6 \times 128.6 \times 43.18 \text{ mm} (19 \times 6.15 \times 1.74 \text{ in.})$				

Signal I/O connectors

Table 13. Connector specifications

Parameter	Specification			
User accessible I/O connectors (excluding USB and Ethernet)	Thermocouple inputs, digital I/O connector, expansion connector, chassis ground			
Thermocouple connector type	Thermocouple Mini-Jack (Omega PCC-SMP-V-U-100)			
Digital I/O connector type	50-pin IDC header			
Compatible cable for the 50-pin DIO connector	C50FF- x (where x= length in feet)			
Compatible accessory products with the C50FF- <i>x</i> cable	■ CIO-MINI50 ■ SCB-50			
Expansion connector type	40-pin IDC header			
Compatible cables for the 40-pin expansion connector	C40FF- x (where x= length in feet)			
Chassis ground connector	6-32 threaded screw			

Table 14. Thermocouple connector pinout

Pin	Signal Name	Pin Description	Pin	Signal Name	Pin Description
14	TC32(+)	CH32 sensor input (+)	14.7	TC48(+)	CH48 sensor input (+)
J1	TC32(-)	CH32 sensor input (-)	J17	TC48(-)	CH48 sensor input (-)
J2	TC33(+)	CH33 sensor input (+)	J18	TC49(+)	CH49 sensor input (+)
JZ	TC33(-)	CH33 sensor input (-)	J18	TC49(-)	CH49 sensor input (-)
10	TC34(+)	CH34 sensor input (+)	140	TC50(+)	CH50 sensor input (+)
J3	TC34(-)	CH34 sensor input (-)	J19	TC50(-)	CH50 sensor input (-)
J4	TC35(+)	CH35 sensor input (+)	J20	TC51(+)	CH51 sensor input (+)
J4	TC35(-)	CH35 sensor input (-)	J20	TC51(-)	CH51 sensor input (-)
J5	TC36(+)	CH36 sensor input (+)	104	TC52(+)	CH52 sensor input (+)
Jo	TC36(-)	CH36 sensor input (-)	J21	TC52(-)	CH52 sensor input (-)
10	TC37(+)	CH37 sensor input (+)	IOO	TC53(+)	CH53 sensor input (+)
J6	TC37(-)	CH37 sensor input (-)	J22	TC53(-)	CH53 sensor input (-)
J7	TC38(+)	CH38 sensor input (+)	IOO	TC54(+)	CH54 sensor input (+)
J/	TC38(-)	CH38 sensor input (-)	J23	TC54(-)	CH54 sensor input (-)
J8	TC39(+)	CH39 sensor input (+)	J24	TC55(+)	CH55 sensor input (+)
Jo	TC39(-)	CH39 sensor input (-)	J24	TC55(-)	CH55 sensor input (-)
10	TC40(+)	CH40 sensor input (+)	105	TC56(+)	CH56 sensor input (+)
J9	TC40(-)	CH40 sensor input (-)	J25	TC56(-)	CH56 sensor input (-)
J10	TC41(+)	CH41 sensor input (+)	J26	TC57(+)	CH57 sensor input (+)
310	TC41(-)	CH41 sensor input (-)	J26	TC57(-)	CH57 sensor input (-)
J11	TC42(+)	CH42 sensor input (+)	J27	TC58(+)	CH58 sensor input (+)
JII	TC42(-)	CH42 sensor input (-)	J21	TC58(-)	CH58 sensor input (-)
J12	TC43(+)	CH43 sensor input (+)	IOO	TC59(+)	CH59 sensor input (+)
J12	TC43(-)	CH43 sensor input (-)	J28	TC59(-)	CH59 sensor input (-)
J13	TC44(+)	CH44 sensor input (+)	J29	TC60(+)	CH60 sensor input (+)
313	TC44(-)	CH44 sensor input (-)	J29	TC60(-)	CH60 sensor input (-)
J14	TC45(+)	CH45 sensor input (+)	J30	TC61(+)	CH61 sensor input (+)
J14	TC45(-)	CH45 sensor input (-)	J30	TC61(-)	CH61 sensor input (-)
J15	TC46(+)	CH46 sensor input (+)	J31	TC62(+)	CH62 sensor input (+)
313	TC46(-)	CH46 sensor input (-)	JST	TC62(-)	CH62 sensor input (–)
J16	TC47(+)	CH47 sensor input (+)	J32	TC63(+)	CH63 sensor input (+)
JID	TC47(-)	CH47 sensor input (-)	JSZ	TC63(-)	CH63 sensor input (–)

Table 15. Digital I/O connector (J33) pinout

Pin	Signal Name	Pin Description	Pin	Signal Name	Pin Description
1	DOUT0	Digital Output 0 / Alarm Output 32	2	DOUT1	Digital Output 1 / Alarm Output 33
3	DOUT2	Digital Output 2 / Alarm Output 34		DOUT3	Digital Output 3 / Alarm Output 35
5	DOUT4	Digital Output 4 / Alarm Output 36	6	DOUT5	Digital Output 5 / Alarm Output 37
7	DOUT6	Digital Output 6 / Alarm Output 38	8	DOUT7	Digital Output 7 / Alarm Output 39
9	DOUT8	Digital Output 8 / Alarm Output 40	10	DOUT9	Digital Output 9 / Alarm Output 41
11	DOUT10	Digital Output 10 / Alarm Output 42	12	DOUT11	Digital Output 11 / Alarm Output 43
13	DOUT12	Digital Output 12 / Alarm Output 44	14	DOUT13	Digital Output 13 / Alarm Output 45
15	DOUT14	Digital Output 14 / Alarm Output 46	16	DOUT15	Digital Output 15 / Alarm Output 47
17	IGND	Isolated Digital GND	18	IGND	Isolated Digital GND
19	IGND	Isolated Digital GND	20	IGND	Isolated Digital GND
21	DOUT16	Digital Output 16 / Alarm Output 48	22	DOUT17	Digital Output 17 / Alarm Output 49
23	DOUT18	Digital Output 18 / Alarm Output 50	24	DOUT19	Digital Output 19 / Alarm Output 51
25	DOUT20	Digital Output 20 / Alarm Output 52	26	DOUT21	Digital Output 21 / Alarm Output 53
27	DOUT22	Digital Output 22 / Alarm Output 54	28	DOUT23	Digital Output 23 / Alarm Output 55
29	DOUT24	Digital Output 24 / Alarm Output 56	30	DOUT25	Digital Output 25 / Alarm Output 57
31	DOUT26	Digital Output 26 / Alarm Output 58	32	DOUT27	Digital Output 27 / Alarm Output 59
33	DOUT28	Digital Output 28 / Alarm Output 60	34	DOUT29	Digital Output 29 / Alarm Output 61
35	DOUT30	Digital Output 30 / Alarm Output 62	36	DOUT31	Digital Output 31 / Alarm Output 63
37	IGND	Isolated Digital GND	38	IGND	Isolated Digital GND
39	IGND	Isolated Digital GND	40	IGND	Isolated Digital GND
41	DIN0	Digital Input 0	42	DIN1	Digital Input 1
43	DIN2	Digital Input 2	44	DIN3	Digital Input 3
45	DIN4	Digital Input 4	46	DIN5	Digital Input 5
47	DIN6	Digital Input 6	48	DIN7	Digital Input 7
49	IGND	Isolated Digital GND	50	IGND	Isolated Digital GND

Table 16. Expansion connector (J34) pinout

Pin	Signal Name	Pin Description		Pin	Signal Name	Pin Description
1	+12VA	+12 VA power input		2	AGND	Isolated Analog GND
3	+12VA	+12 VA power input		4	AGND	Isolated Analog GND
5	+5VA	+5 VA power input		6	AGND	Isolated Analog GND
7	+5VA	+5 VA power input		8	AGND	Isolated Analog GND
9	+5VA	+5 VA power input	Note 7	10	AGND	Isolated Analog GND
11	+5VA	+5 VA power input	Note 7	12	AGND	Isolated Analog GND
13	+3.3VA	+3.3 VA power input		14	AGND	Isolated Analog GND
15	+3.3VA	+3.3 VA power input		16	AGND	Isolated Analog GND
17	+3.3VA	+3.3 VA power input		18	AGND	Isolated Analog GND
19	+3.3VA	+3.3 VA power input		20	AGND	Isolated Analog GND
21	CS	Chip select		22	AGND	Isolated Analog GND
23	SCK	Serial clock		24	AGND	Isolated Analog GND
25	MOSI	Master output data		26	AGND	Isolated Analog GND
27	MISO	Master input data	Master input data		AGND	Isolated Analog GND
29	IRQ	Interrupt request		30	AGND	Isolated Analog GND
31	RSVD	Reserved		32	AGND	Isolated Analog GND
33	RSVD	Reserved		34	AGND	Isolated Analog GND
35	RSVD	Reserved		36	AGND	Isolated Analog GND
37	RSVD	Reserved		38	AGND	Isolated Analog GND
39	AGND	Isolated Analog GND		40	AGND	Isolated Analog GND

Note 7: Power supplies (+12 VA, +5 VA, 3.3 VA) located at connector J34 are intended for use with the TC-32-EXP only.

CE Declaration of Conformity According to ISO/IEC 17050-1:2010

Manufacturer: Measurement Computing Corporation

Address: 10 Commerce Way

Suite 1008

Norton, MA 02766

USA

Product Category: Electrical equipment for measurement, control and laboratory use.

Date and Place of Issue: October 15, 2015, Norton, Massachusetts USA

Test Report Number: EMI6774.15

Measurement Computing Corporation declares under sole responsibility that the product(s)

TC-32-EXP

Complies with the essential requirements of the following applicable European Directives:

Electromagnetic Compatibility (EMC) Directive 2004/108/EC

Low Voltage Directive 2006/95/EC

RoHS Directive 2011/65/EU

Conformity is assessed in accordance to the following standards:

EMC:

Emissions:

- EN 61326-1:2013 (IEC 61326-1:2012), Class A
- EN 55011: 2009 + A1:2010 (IEC CISPR 11:2009 + A1:2010), Group 1, Class A

Immunity

- EN 61326-1:2013 (IEC 61326-1:2012), Controlled EM Environments
- EN 61000-4-2:2008 (IEC 61000-4-2:2008)
- EN 61000-4-3 :2010 (IEC61000-4-3:2010)
- EN 61000-4-4:2012 (IEC61000-4-4:2012)
- EN 61000-4-5 :2005 (IEC61000-4-5:2005)
- EN 61000-4-6 :2013 (IEC61000-4-6:2013)
- EN 61000-4-11:2004 (IEC61000-4-11:2004)

Safety:

■ EN 61010-1 (IEC 61010-1)

Environmental Affairs:

Articles manufactured on or after the Date of Issue of this Declaration of Conformity do not contain any of the restricted substances in concentrations/applications not permitted by the RoHS Directive.

Carl Haapaoja, Director of Quality Assurance

Measurement Computing Corporation 10 Commerce Way Norton, Massachusetts 02766 (508) 946-5100

Fax: (508) 946-9500

E-mail: info@mccdaq.com

www.mccdaq.com

NI Hungary Kft H-4031 Debrecen, Hátar út 1/A, Hungary

Phone: +36 (52) 515400

Fax: +36 (52) 515414

http://hungary.ni.com/debrecen