
Designing and Verifying a
Digital Filter Using MATLAB With
Eclypse Z7 as FPGA-in-the-Loop

by Pablo Trujillo



2Designing and Verifying a Digital Filter Using MATLAB With Eclypse Z7 as FPGA-in-the-Loop

Digital Filters running on embedded hardware or FPGAs will most likely use fixed-point 
arithmetic. The effects of quantization need to be checked during development, preferably 
with hardware-in-the-loop. By using MATLAB and an Eclypse Z7 FPGA board with Zmods for 
data conversion, that’s easy.

When hearing the phrase "software for engineering", most of us engineers immediately think 
of MATLAB. There are few areas in engineering for which MATLAB does not provide a 
package, and digital signal processing and FPGA design are definitely not among them. 
MATLAB’s Signal Processing Toolbox gives developers all the features they need to create a 
filter or any signal processing system. The Fixed-Point Designer lets them quantize their data 
and helps them to implement fixed-point and floating-point algorithms in their processing 
system and to check their effects on the digital system. And packages like HDL Coder, HDL 
Verifier, and FPGA Data Capture allow them to test their design on a real FPGA as 
hardware-in-the-loop and to transfer the resulting system to their FPGA board. This way, 
creating a signal processing system becomes less complex.

Suppose we want to design a bandpass filter for a communications system to extract a 
certain signal from a line that employs frequency division multiplexing. This technique is 
used for some time, for example, to transmit different radio stations over the same data line, 
the air. Another case is Power Line Communication (PLC), where we can transfer

Introduction

Figure 1: The Eclypse Z7 Zynq-7000 FPGA board is used for the hardware-in-the-loop

https://www.mathworks.com/products/signal.html?s_tid=srchtitle_Signal%20Processing%20toolbox_1
https://www.mathworks.com/products/fixed-point-designer.html?s_tid=srchtitle_Fixed%2520Point%2520designer_2
https://www.mathworks.com/products/hdl-coder.html?s_tid=srchtitle_HDL%20Coder_1
https://www.mathworks.com/products/hdl-verifier.html?s_tid=srchtitle_HDL%20Verifier_1
https://www.mathworks.com/products/hdl-verifier.html?s_tid=srchtitle_HDL%20Verifier_1
https://www.mathworks.com/help/supportpkg/xilinxfpgaboards/ug/fpgadatacapture.html?s_tid=srchtitle_FPGA%2520Data%2520Capture_1


Figure 2 shows the frequency spectrum of our transmission line. Each channel has a 
bandwidth of 20kHz, and the channels are spaced 100kHz apart. Our channel of interest is 
channel 1, and we will design our bandpass filter to avoid interferences from the other 
channels. To do this, we need to ensure an attenuation of at least –60dB at the bandwidth of 
the other channels. To get this characteristic, our filter should have a passband between 
990kHz and 1010kHz, a lower frequency stopband ranging from 0Hz to 910kHz, and a higher 
frequency stopband starting at 1090kHz.

power at grid frequencies of 50Hz or 60Hz, and data at frequencies of several hundred 
kilohertz.

And once the filter is designed, we want to run it on a real hardware. This hardware system 
could comprise, for example, an Eclypse Z7 Zynq-7000 SoC (System on Chip) FPGA board 
from Digilent with one Zmod Scope 1410 2-channel 14-bit oscilloscope module and one 
Zmod AWG 1411 2-channel 14-bit arbitrary waveform generator module – both from Digilent 
– mounted on top. With the help of the analog-to-digital converter (ADC) of the Zmod Scope 
1410 we can digitize the line signal and we can output both, the sampled and the filtered 
signal, through the digital-to-analog converter (DAC) on the Zmod AWG, while running the 
filter itself on the Zynq-7000.

Designing the Filter and Taking Care of Quantization

3Designing and Verifying a Digital Filter Using MATLAB With Eclypse Z7 as FPGA-in-the-Loop

Figure 2: The frequency spectrum of the example transmission line.
The signal of interest is channel 1.



4Designing and Verifying a Digital Filter Using MATLAB With Eclypse Z7 as FPGA-in-the-Loop

If the filter behaves to our satisfaction, we can generate the HDL (Hardware Description 
Language) code with the help of the HDL Coder to test the filter on the Eclypse Z7 FPGA 
board, after making a few modifications to the Simulink model so that we can generate the 
HDL code for the whole system.

Bringing the Hardware into the Loop

With the help of the Filter Designer tool from MATLAB we can configure all these aspects of 
our digital filter. For our example, we use an IIR (Infinite Impulse Response) Butterworth filter, 
because it allows us to design a low-order filter with a high attenuation and it has a fairly flat 
passband. The sampling frequency will be chosen to satisfy both the hardware requirements 
of our data converters – 105MSPS for the AD9648-105 ADC from Analog Devices on the 
Zmod Scope and 100MSPS for the AD9717 DAC, also from Analog Devices – and the Nyquist 
sampling theorem. For our example, 10MSPS are sufficient.

In addition, as our data converters are 14-bit fixed-point devices, we need to quantize the 
data of the filter through the Filter Quantization panel of the Filter Designer Tool to match 
their word lengths, but also in a way that no loss of resolution will occur. Once we entered all 
parameters in the Filter Designer and generated the filter, the Filter Designer will show us the 
DFT (Discrete Fourier Transformation) of the filter’s response. Now, we can export it to a 
Simulink model, where we can run a first test and verify whether the quantized model meets 
the defined criteria. As simulation input, we generate in MATLAB a sum signal from the three 
desired frequencies.

Figure 3: Response of the quantized filter



5Designing and Verifying a Digital Filter Using MATLAB With Eclypse Z7 as FPGA-in-the-Loop

The HDL Block Properties window allows us to configure the pipeline registers and the 
architecture in terms of multipliers used. We have to choose one of three different 
architecture models: a fully parallel, a fully serial, and a partially serial architecture.

With the fully parallel architecture, the output data frequency can be the same as the clock 
frequency, and each multiplication of the filter will use one DSP slice of the FPGA. The fully 
serial implementation, however, uses only one DSP slice, but the output frequency will be 
reduced to (clock speed) / (number of multiplications), slowing down the computation. The 
partially serial architecture finally is in the middle, with the number of slices selectable. This 
has the disadvantage that the number of used logic elements increases. As we have enough 
DSP Slices on the Zynq-7000 SoC on the Eclypse Z7, fully parallel is a good choice. As a last 
step here, we select the target HDL language, the device used, the reset, and the reports 
wished on the HDL Coder Properties page. With all the configurations done, we can generate 
the HDL code for our subsystem.

Now we can simulate the filter with the FPGA in the loop. This means that the filter algorithm 
will execute directly on the FPGA and not in software on the host workstation. This is where 
MATLAB's FIL (FPGA-in-the-Loop) tool comes in. It allows us, after creating the board 
definition, to connect to the board.

Now we can build the project and Vivado, Xilinx’ HDL synthesis and analysis tool, will open in 
the MATLAB command window and synthesize and implement the FIL demo design. Once 
Vivado finishes the synthesis, a Simulink model will be opened, showing the added FIL block. 
Now, we can connect the Eclypse Z7 board and load the FIL model into the FPGA.

Figure 4: The Block Parameter screen of the FPGA-in-the-Loop tool



6Designing and Verifying a Digital Filter Using MATLAB With Eclypse Z7 as FPGA-in-the-Loop

With the filter tested and verified with the FPGA-in-the-loop, we can create the final 
application, which uses not only the filter but also the ADC and DAC boards. For this, we 
create a Vivado project where we will add all the blocks necessary, like the Zynq-7000, the 
drivers for the data converters, and the clock generator.

On the Zynq-7000 SoC, we won’t use the Processing System, only the Programmable Logic 
(PL). As clock source, we will use the 125MHz clock from the Ethernet PHY of the Eclypse Z7 
board, which is connected to the PL. An additional clock enable generator to create the filter 
sampling clock of 10MHz and the system clock of 100MHz is also necessary.

For the ADC board driver, we will use the AXI (Advanced eXtensible Interface)-Stream 
Interface IP. When adding the filter, we have to take care of the data sizes, because the output 
of the AXI-Stream IP is 32 bits wide and contains the data of both ADC channels. The data 
word corresponding to channel 1 is on the lower 14 bits of the word, so it needs to be 
extracted.

Applying Data Capture for Verification

To simulate the signal source, three sine-wave signals representing the three bands in the 
transmission line need to be added, with frequencies of 900kHz, 1MHz, and 1.1MHz. To verify 
the output, we need a Spectrum Analyzer window. Once the simulation has finished, the 
output only contains the 1MHz signal.

Figure 5: The Spectrum Analyzer window shows that only the signal on
channel 1 is le� a�er filtering



7Designing and Verifying a Digital Filter Using MATLAB With Eclypse Z7 as FPGA-in-the-Loop

Another possibility is to use a logic analyzer, either an external device or the Integrated Logic 
Analyzer (ILA) from Xilinx, which can be used to monitor the input and output data inside the 
FPGA and export it to MATLAB. A third possibility is to use the FPGA Data Capture feature of 
MATLAB, which auto-generates an IP block that captures live data from the FPGA and sends 
it to MATLAB or Simulink via JTAG. FPGA Data Capture is part of the HDL Verifier Support 
Package for Xilinx FPGA boards.
 
In the window for the FPGA data capture component generation, the filter input and output 
ports can be added, and the buffer size and maximum sequence depth set. Once done, the 
tool will generate the HDL IP core, as well as a script to start the data capturing from the 
MATLAB workspace, and a Simulink model to capture data from Simulink. The last step is to 
add all files to the project and the data capture module to the block design. Then, we can 
generate the bit stream.

To test the system, we have to close the hardware server from Vivado to release the JTAG 
port. Some adjustments to the Simulink data acquisition model, such as removing the

Similar is true for the DAC driver, where the upper output bits of the filter have to be 
discarded, using a Slice block. Our example project uses both DAC channels: the filter output 
is connected to channel 1 and the original signal, as sampled by the ADC, is connected to 
channel 2 for verification through an oscilloscope.

Once the block design is complete, we can validate it, create the HDL wrapper, and generate 
the bit stream. Once the design is synthesized and implemented, we can test the design on 
the Eclypse Z7 board, together with a signal generator and an oscilloscope. Using a 1MHz 
sine wave, the passband can be checked, and with a 910kHz signal, the stopband. This 
verification indicates that everything works as expected.

Figure 6: The design block showing the AXI-Stream IP, the data word 
conversion slice and the bandpass filter



Figure 7: Block diagram for the real-time data capture on the Eclypse Z7 board

Figure 8: Using a white noise signal as input, the filter lets pass only 
frequencies from 990kHz to 1010kHz

8Designing and Verifying a Digital Filter Using MATLAB With Eclypse Z7 as FPGA-in-the-Loop

oscilloscope and replacing it with the spectrum analyzer, and configuring data type and 
format, are required as well.

With white noise generated by an external signal generator, we see that the filter works as 
expected in the frequency range from 990kHz to 1010kHz without attenuation. However, there 
is a small catch: the update rate of the analyzer is 1Hz instead of the 10MHz of the real design.

This project shows that it is possible to easily design a digital filter, check it step by step, and 
finally verify it with an Eclypse Z7 Zinq-7000 board as hardware-in-the-loop, by using the 
different packages of MATLAB and Vivado. A full step-by-step tutorial for this project is 
available here:
 

https://www.controlpaths.com/2021/11/15/
designing-a-filter-on-matlab-and-verifying-it-using-fpga-in-the-loop-and-eclypse-z7/

Pablo Trujillo is an FPGA developer for power electronics devices and a specialist in DSP and power electronics control design.

https://www.controlpaths.com/2021/11/15/designing-a-filter-on-matlab-and-verifying-it-using-fpga-in-the-loop-and-eclypse-z7/


Copyright © 2022


